On the Lebesgue constant for the Xu interpolation formula

نویسندگان

  • Len Bos
  • Stefano De Marchi
  • Marco Vianello
چکیده

In the paper [8], the author introduced a set of Chebyshev-like points for polynomial interpolation (by a certain subspace of polynomials) in the square [−1, 1], and derived a compact form of the corresponding Lagrange interpolation formula. In [1] we gave an efficient implementation of the Xu interpolation formula and we studied numerically its Lebesgue constant, giving evidence that it grows like O((log n)), n being the degree. The aim of the present paper is to provide an analytic proof that indeed the Lebesgue constant does have this order of growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical study of the Xu polynomial 2 interpolation formula in two variables 3

8 In his paper " Lagrange interpolation on Chebyshev points of two variables " (J. 9 220–238), Y. Xu proposed a set of Chebyshev like points for polynomial interpolation in the square 10 [−1, 1] 2 , and derived a compact form of the corresponding Lagrange interpolation formula. We inves-11 tigate computational aspects of the Xu polynomial interpolation formula like numerical stability and 12 ef...

متن کامل

Bivariate Interpolation at Xu Points: Results, Extensions and Applications

In a recent paper, Y. Xu proposed a set of Chebyshev-like points for polynomial interpolation on the square [−1, 1]. We have recently proved that the Lebesgue constant of these points grows like log of the degree (as with the best known points for the square), and we have implemented an accurate version of their Lagrange interpolation formula at linear cost. Here we construct non-polynomial Xu-...

متن کامل

Discrete Fourier analysis on a dodecahedron and a tetrahedron

A discrete Fourier analysis on the dodecahedron is studied, from which results on a tetrahedron is deduced by invariance. The results include Fourier analysis in trigonometric functions, interpolation and cubature formulas on these domains. In particular, a trigonometric Lagrange interpolation on the tetrahedron is shown to satisfy an explicit compact formula and the Lebesgue constant of the in...

متن کامل

On the backward stability of the second barycentric formula for interpolation

We present a new stability analysis for the second barycentric formula, showing that this formula is backward stable when the relevant Lebesgue constant is small.

متن کامل

Lebesgue Constant Minimizing Bivariate Barycentric Rational Interpolation

The barycentric form is the most stable formula for a rational interpolant on a finite interval. The choice of the barycentric weights can ensure the absence of poles on the real line, so how to choose the optimal weights becomes a key question for bivariate barycentric rational interpolation. A new optimization algorithm is proposed for the best interpolation weights based on the Lebesgue cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 141  شماره 

صفحات  -

تاریخ انتشار 2006